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Abstract: The problem involving oblique wave interaction with a floating bridge in the
presence of a floating horizontal porous plate over a trench-type bottom is investigated. The
role of the porous plate and the trench is analyzed in detail to reduce wave forces on the bridge.
Significant changes are found in forces due to this porous breakwater and trench type of bottom
topography compared to the case without breakwater and trench. In addition, the maxima in
wave energy dissipation are associated with the minima in wave forces acting on the floating
bridge. The findings from the present model are likely to be helpful in understanding the role
of porous breakwater and trench in engineering applications.
Keywords: Floating bridge, Horizontal porous plate, Trench, Eigenfunction expansion, Wave
forces.

1 Introduction
In recent decades, ocean space has been targeted as one of the alternatives to meet the growing
demand for infrastructures in the form of floating bridges, airports, military bases and enter-
tainment facilities. To increase the life-span of the floating object or floating bridge, there is a
need to investigate various means to mitigate the wave-induced forces acting on floating bridges.
Near these infrastructures, the construction of a breakwater such as a porous barrier (see [1-9])
leads to a significant reduction in wave-induced forces. Most of the above investigations involve
interaction of waves with one or two barriers over uniform finite depth of water. Since the bot-
tom of the ocean is hardly non-conflicting throughout, it is justifiable to study the propagation
of surface water waves over a non-uniform bottom topography due to their significant usage in
marine and coastal engineering. In the last few decades, problems of scattering of water waves
involving uneven bottom topography have been investigated to find out the characteristics of
the conservation of wave energy by many researchers (see [10-13]).

Hence, the present paper develops a model by placing the horizontal porous plate over the
asymmetric trench type of bottom topography and at a finite distance from a floating bridge.
The effectiveness of the horizontal porous breakwater is studied. The effects of various physical
parameters of porous barriers and bridges are analyzed to mitigate the wave forces acting on
the bridge and to protect the bridge.

2 Mathematical formulation
It is assumed that the fluid is inviscid, incompressible and motion is irrotational and simple
harmonic in time. Using the linear theory, the spatial velocity potential ϕj in each region j
(j = 1, 2...7), which satisfies the governing equation

∂2ϕj
∂2x

+
∂2ϕj
∂2y

− l2ϕj = 0; j = 1, 2...7 (1)
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with boundary conditions:

∂ϕj
∂y

+ (ω2/g)ϕj = 0 on y = 0, j = 1, 3, 4, 5, 7 (2)

ϕ2y(x, 0) = −ik0Gϕ2(x, 0) on -c ≤ x ≤ −b. (3)

∂ϕj
∂y

= 0, on y = h1, j = 1, 2, 3

∂ϕj
∂y

= 0, on y = h2 j = 4

∂ϕj
∂y

= 0, on y = h3 j = 5, 6, 7


(4)

Condition on the trench walls:

ϕ5x(−a, y) = 0, for h1 < y < h2,

ϕ5x(a, y) = 0, for h3 < y < h2,

}
(5)

Condition on vertical and horizontal walls
of floating bridge:

∂ϕ5
∂x

= 0, on x = d and 0 ≤ y ≤ d3,

∂ϕ7
∂x

= 0 on x = e and 0 ≤ y ≤ d3,


(6)

(a, 0) (d, 0) (e, 0)(-c, 0) (-b, 0) (-a, 0)
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y
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y = h1

y = h3

y = h2

y = 0

1

∂ϕ6
∂y

= 0 on y = d3 and d ≤ x ≤ e, (7)

Matching the continuity of velocity and pressure along the mutual boundaries at x = −c, x =
−b, x = −a, x = a, x = d, and x = e then yields

ϕ1(−c, y)& = ϕ2(−c, y), 0 < y < h1,

ϕ1x(−c, y)& = ϕ2x(−c, y), 0 < y < h1,

}
(8)

ϕ2(−b, y) = ϕ3(−b, y), 0 < y < h1,

ϕ2x(−b, y) = ϕ3x(−b, y), 0 < y < h1,

}
(9)

ϕ3(−a, y) = ϕ4(−a, y), 0 < y < h1,

ϕ3x(−a, y) = ϕ4x(−a, y), 0 < y < h1,

}
(10)

ϕ4(a, y) = ϕ5(a, y), 0 < y < h3,

ϕ4x(a, y) = ϕ5x(a, y), 0 < y < h3,

}
(11)

ϕ5(d, y) = ϕ6(d, y), d3 < y < h3,

ϕ5x(d, y) = ϕ6x(d, y), d3 < y < h3,

}
(12)

ϕ6(e, y) = ϕ7(e, y), d3 < y < h3,

ϕ6x(e, y) = ϕ7x(e, y), d3 < y < h3,

}
(13)

condition on the trench walls:

ϕ5x(−a, y) = 0, for h1 < y < h2,

ϕ5x(a, y) = 0, for h3 < y < h2.

}
(14)

The far-field behaviour given by

ϕ1 → (
ig

ω
)
cosh k0(h1 − y)

cosh k0h1
{eiK0(x+c) +R0e

−iK0(x+c)}, for as x→ −∞

ϕ7 → (
ig

ω
)
cosh p0(h3 − y)

cosh p0h3
{T0eiP0(x−e)}, for as x→ ∞.

 (15)

where, ω is angular frequency, g is acceleration due to gravity, G is the porous effect parameters
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of the porous plate, θ1 is the angle of incidence. K0 = k0 cos θ1 and k0 is the wave number of
plane progressive waves and it is the real root the transcendental equation

k tanh(kh1) = ω2/g, (16)

and P0 =
√
p02 − (k0 sin θ1)

2 and p0 is positive the real root of transcendental equation

p tanh(ph3) = ω2/g. (17)

R0 and T0 are unknowns associated with the amplitude of the reflected and transmitted waves
respectively to be determined here.

3 Method of solution
To find ϕj , j = 1, 2, ..., 7, a Havelock’s expansion (ref.[14]) of ϕj(x, y) is written in terms of
eigenfunctions in each region and we substitute in the matching conditions (7) to (13), we get

RmNm −
∞∑
n=0

AmnCn −
∞∑
n=0

Amne
iQnl1Dn = −ϵm;m = 0, 1, 2, ..., (18a)

KmRmNm +
∞∑
n=0

QnAmnCn −
∞∑
n=0

QnAmne
iQnl1Dn = K0ϵm;m = 0, 1, 2, ..., (18b)

∞∑
n=0

eiQnl1AmnCn +
∞∑
n=0

AmnDn −NmEm −Nme
iKml2Fm = 0;m = 0, 1, 2, ..., (18c)

−
∞∑
n=0

Qne
iQnl1AmnCn +

∞∑
n=0

QnAmnDn +KmNmEm −KmNme
iKml2Fm = 0;m = 0, 1, 2, ...,

(18d)

(Nme
iKml2)Em +NmFm −

∞∑
n=0

BmnAn −
∞∑
n=0

Bmne
iK̂nl3Bn = 0;m = 0, 1, 2, ..., (18e)

(NmKme
iKml2)Em − (KmNm)Fm −

∞∑
n=0

(K̂nBmn)An +
∞∑
n=0

(BmnK̂ne
iK̂nl3)Bn = 0;m = 0, 1, 2, ...,

(18f)

∞∑
n=0

(Cmne
iK̂nl3)An +

∞∑
n=0

CmnBn −
∞∑
n=0

DmnGn −
∞∑
n=0

(Dmne
iPnl4)Hn = 0;m = 0, 1, 2, ..., (18g)

∞∑
n=0

(CmnK̂ne
iK̂nl3)An −

∞∑
n=0

(K̂nCmn)Bn −
∞∑
n=0

(PnDmn)Gn +
∞∑
n=0

(DmnPne
iPnl4)Hn = 0;m = 0, 1, 2, ...,

(18h)
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∞∑
n=0

(Emne
iPnl4)Gn +

∞∑
n=0

EmnHn −
∞∑
n=0

FmnMn −
∞∑
n=0

(Fmne
iSnl5)Nn = 0;m = 0, 1, 2, ..., (18i)

∞∑
n=0

(EmnPne
iPnl4)Gn −

∞∑
n=0

PnEmnHn −
∞∑
n=0

SnFmnMn +

∞∑
n=0

(SnFmne
iSnl5)Nn = 0;m = 0, 1, 2, ...,

(18j)

∞∑
n=0

Fmne
iSnl5Mn +

∞∑
n=0

FmnNn −
∞∑
n=0

EmnTn = 0;m = 0, 1, 2, ..., (18k)

∞∑
n=0

FmnSne
iSnl5Mn −

∞∑
n=0

SnFmnNn −
∞∑
n=0

PnEmnTn = 0;m = 0, 1, 2, ..., (18l)

∞∑
n=0

(Pne
iPnl4)GmnGn − PnGmnHn = 0;m = 0, 1, 2, ..., (18m)

∞∑
n=0

PnGmnTn = 0;m = 0, 1, 2, ..., (18n)

∞∑
n=0

(An − eiPnl3Bn)PnHmn = 0;m = 0, 1, 2, ..., (18o)

∞∑
n=0

(eiPnl3An −Bn)PnĤmn = 0;m = 0, 1, 2, ..., (18p)

where

ϵm =
{ N̂m, for m = 0

0, for m ̸= 0
(19a)

Amn =

∫ h1

0
gnψm dy,Bmn =

∫ h1

0
ψmψ̂n dy, for m, n = 0,1,2, ..., (19b)

Cmn =

∫ h3

0
ψmψ̂n dy, Dmn =

∫ h3

0
ψmZn dy, for m, n = 0,1,2, ..., (19c)

Emn =

∫ h3

d3

Znψm dy, Fmn =

∫ h3

d3

Xnψm dy, for m, n = 0,1,2, ..., (19d)
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Gmn =

∫ d3

0
Znψm dy, for m, n = 0,1,2, ..., (19e)

Hmn =

∫ h2

h1

ψ̂nψm dy, Ĥmn =

∫ h2

h3

ψ̂nψm dy, for m, n = 0,1,2, .... (19f)

In equations (18a) to (18p) truncating the series in n,m at N terms, we get an over-
determined system (ODS) of (16N + 16) equations with (12N + 12) unknowns of the form

ÂX = b̂ (20)

where Â is of the size (16N + 16)× (12N + 12) and X is the column vector of unknown coeffi-
cients. The least-square solution can be obtained by solving the normal system Â∗ÂX = Â∗b̂,
where Â∗ denotes transpose conjugate of Â. The unique least-square solution is given by
X = (Â∗Â)−1(Â∗b̂) provided Â has linearly independent columns which can be possibly choos-
ing the values of the parameters appropriately. The effectiveness of floating porous plate as a
breakwater can be studied through wave load which are defined as:
The non-dimensional hydrodynamics force on the floating bridge which are defined as:

Fv = | ω
gh3

∫ e

d
ϕ6(x, d3) dx|, (21)

Fh = | ω
gh3

∫ d3

0
{ϕ7(e, y)− ϕ5(d, y)} dy|. (22)

Figure 1: Fv and Fh versus k0h1 for
fixed H2 = H3 = 1, G = 0, L1 = L2 =
L3 = L4 = 0, L5 = 2, D3 = 0.25, θ1 =
600

Figure 2: |R0| and |T0| versus Kh1 for fixed
H2 = H3 = 1, G = 0, L1 = 2, L2 = L3 = L4 =
L5 = 0, D3 = 0, θ1 = 00
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4 Numerical results

In this section, the hydrodynamic quantities namely, vertical wave force on porous plate, vertical
wave force on floating bridge and horizontal wave force on floating bridge, are numerically
computed from the equations (20) to (21). The non-dimensional parameters are given as θ1 =
300, h1 = 10m,Kh1 = ω2h1/g,Hi = hi/h1, Lj = lj/h1, fori=1, 2, 3, D3 = d3/h1, L2 = L4 = 1,
for j = 1, 2, 3, 4, 5 otherwise unless mentioned in the paper.

4.1 Validation

For the validation of the computational results obtained in the present work, the present results
are compared with the results from the literature for certain limiting cases. In Fig.1 the forces
Fv and Fh against wave number k0h1 in the absence of porous plate in the uniform finite depth
of water are compared with the results of Abul and Gesraha (2000). The graph shows that a
good agreement between the present method and the method of Abul and Gesraha is obtained.

In Fig.2, another comparison is made with the particular case involving a rigid dock over
a flat bottom (non-appearance of trench H2 = H3 = 1) and the absence of floating bridge
(L5 = 0, D3 = 0). Here, the result |R0| and |T0| shows good agreement with Linton’s results.

(a) (b)

Figure 3: Variations in (a) Fv and (b) Fh versus k0h1 for different values of G with fixed values
of H2 = 1.5, H3 = 0.8, θ1 = 300, L1 = L3 = L5 = 2

Figure 3 exhibits the variations of vertical forces Fv and horizontal force Fh on a floating
bridge for different values of porous effect parameter. It is noticed that all curves show an
oscillatory pattern with an optima value. The oscillatory pattern is due to the resonating
interaction of the incident wave and reflected wave between the porous plate and the floating
bridge. Here, Fv and Fh are reduced as porosity increases because of more incidence wave energy
dissipation. It may be noted that the vertical force is higher than the horizontal one due to the
impact of incident waves on the floating bridge.

Figure 4 demonstrates the variations of the wave forces as a function of wave numbers for
different lengths of the porous plate. It is perceived that the oscillations in the curves with
optima exist for smaller values L1 and when the length increases, both forces decrease on the
bridge because of more energy dissipation. The minimum force is observed when the length of
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(a) (b)

Figure 4: Variations in (a) Fv and (b) Fh versus k0h1 for different values of L1 with fixed values
of H2 = 1.5, H3 = 0.8, θ1 = 300, G = 0.7 + 0.5i, L3 = L5 = 2

(a) (b)

Figure 5: Variations in (a) Fv and (b) Fh versus θ1 for different values of Kh1 with fixed values
of H2 = 1.5, H3 = 0.8, G = 0.7 + 0.5i, L1 = L3 = L5 = 2

the porous plate is large (L1 = 5) with a non-oscillatory pattern. This phenomenon of optima in
wave reflection is due to the constructive and/or destructive interference of incident and reflected
waves within the structures. In the absence of a porous plate, maximum force is experienced by
the floating bridge, but the force decreases in the presence of the porous plate.

The wave forces against incident angle θ1 are examined in Fig.5 for different values of Kh1.
With the increase in the angle of wave incidence, wave forces decrease up to zero. The reason is
that for the higher value of θ1, more reflection is possible, resulting less forces. Here, the results
also reveal that the horizontal force reduces with a higher rate as compared to the vertical force.
By comparing the curves for different values of Kh1, more force is experienced by the floating
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bridge for smaller values of Kh1 in the range 0 ≤ θ1 ≤ 700, and after θ1 > 700 (Called as a
critical angle) it produces almost same force.

5 Conclusions

The present study investigates the performance of horizontal porous plate over trench to diminish
wave force on floating bridge. Based on the eigenfunction expansion method, an over-determined
system of linear algebraic equations is obtained which is solved by using least-square method.
The numerical results for vertical force and horizontal force are plotted though different graphs
for various parameters such as the porosity of plate, length of plate and angle of incidence. The
major conclusions are as follows: (i) Increasing the plate porosity it reduces the wave force on
the floating bridge. (ii) Increasing the porous plate’s length dissipates more incident wave energy
and hence reduces the wave forces on the floating bridge. (iii) After the critical angle, the force
for all values of Kh1 is is almost same and reduced up to a minimum value of zero.

Thus, a suitable choice of the values for length of plate, porosity and incidence wave angle
can be helpful in the construction of effective breakwaters involving a horizontal porous plate
which will create a calm zone in the lee side region.
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