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ABSTRACT

Accurate forecasting of the reservoir inflow is crucial for operations and management of water resources.
Due to the nonlinearity and nonstationarity of the real hydrological data, an empirical mode decomposition
based long short term memory (EMD-LSTM) model is proposed in this paper for daily reservoir inflow
forecasting upto 10 days lead time. The accuracy and performance of the model is analysed using the
mean absolute error (MAE), root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE). The
performance of the proposed EMD-LSTM model is compared with artificial neural network (ANN) and
long short term memory (LSTM) model for 3 days, 7 days and 10 days ahead lead time respectively. Daily
inflow data from 2013-2022 of the Bhakra reservoir located on river Sutlej in Himachal Pradesh, India is
used to demonstrate the proposed model. The overall results of the model were highly encouraging in terms
of having Nash-Sutcliffe efficiency of upto 0.94 in validation stage for 10 days ahead forecast as compared
to the ANN and LSTM models. Therefore, the model can provide useful information when the models are
used for decision making and can ensure safe operations of reservoir systems.

Keywords: Reservoir Inflow, Artificial neural network, Long short term memory, Empirical mode
decomposition

1. INTRODUCTION

The forecast of reservoir inflow is essential for the optimal functioning and management of
the reservoirs. The accuracy of the forecast plays a major role in reservoir operation, power
generation, flood control and for optimal distribution of water resources in a basin. The real
hydrological data shows nonlinearity and nonstationarity due to the consequences of human actions
and natural factors posing a challenge in forecasting the inflow. To deal with such challenges,
various forecasting methods have been proposed in the past [Ramaswamy and Saleh(2020),
Bai et al.(2016)Bai, Chen, Xie, and Li] adopting various methodologies ranging from first
principal-based to data-based time series modelling or more recently the machine learning(ML)
algorithms.

Data-driven time series model such as auto-regressive moving average (ARMA).
[Mohammadi et al.(2006)Mohammadi, Eslami, and Kahawita] have been proposed to forecast
floods with a forecast lead-time of up to three days. These models, however, do not consider
the nonlinearity and/or non-stationarity in the data. To deal with such problems, AI prediction
models through ML approaches have been widely used. ANN models have been extensively
applied for reservoir inflow forecasting as they can handle the non-linearity associated with the
reservoir inflow data[Wu et al.(2005)Wu, Han, Annambhotla, and Bryant]. In these ML-based
predictor models, difficulties do originate from the selection process of the model parameters
since their impacts on the prediction precision is mostly significant. To handle time series
horological data, Recurrent neural networks (RNN) have been widely used especially when the
model has to be estimated using a long sequence data. RNN, however, poses the problem of
vanishing gradients and the performance of RNN in time series prediction does not improved
much while the required computational demand is at times substantial. Long short-term memory
network (LSTM), an improvised form of RNN, solves the problem of RNN in training long
sequences and vanishing gradients by applying constant error flow within special memory cells
of the LSTM networks. Many studies have successfully applied LSTM models for groundwater
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level prediction and daily runoff prediction [Zhang et al.(2018)Zhang, Zhu, Zhang, Ye, and Yang,
Zuo et al.(2020)Zuo, Luo, Wang, Lian, and He]

The runoff process is a complex time series with multi-scale laws. The above mentioned predic-
tion methods, however, do not take into consideration the random nature, trend and periodicity of the
real hydrological data, thereby renders the AI prediction models sometimes incompetent. To extract
such characteristics from the data, extensive research on decomposition-based deep learning models
have been employed in reservoir inflow forecasting [Tang et al.(2015)Tang, Wang, He, and Wang].
Various signal processing methods such as wavelet analysis and empirical mode decomposi-
tion (EMD) [Bai et al.(2016)Bai, Chen, Xie, and Li, Kisi et al.(2014)Kisi, Latifoğlu, and Latifoğlu]
have evolved over time which couples signal decomposition with the time series analysis. For
performance enhancement of a model, several decomposition methods, such as Fourier transform,
empirical mode decomposition, wavelet transforms have been coupled with a neural network based
regression model[Maheswaran and Khosa(2013)] in this attempt.

In this paper, EMD is coupled with LSTM to enhance the accuracy of the forecast by decomposing
the inflow time series into several intrinsic mode functions (IMFs). These IMFs are then provided
as an input to the LSTM model. This model is further compared with the ANN and LSTM model to
check for the performance and accuracy.

2. METHODOLOGY

2.1. Artificial Neural Network

ANN model is a supervised machine learning algorithm wherein the underlying correlation between
training data (as input) and pertinent target data or labels (as output) are modelled using several
layers of interconnected neurons. The model represents a complex and nonlinear process that
enables identifying the suitable labels to the input once trained extensively using a rich archive
of training data. In this study, the inflow along with its two lagged values are provided as input to
the model and the inflow at the desired lead time (3 days, 7 days, 10 days) are considered as output.
The input data is normalized between 0 to 1 in order to improve the simulation performance. The
model consists of an input layer with three nodes, two hidden layer with 32 nodes and one output
layer with one node. Relu activation function is used for the ANN model. Following, the network
architecture is defined through rigorous trial and error process prior to training it using a part of the
available time series data.

2.2. Long short term memory model (LSTM)

The traditional or vanilla Recurrent neural network (RNN) is a class of neural networks which
uses recursive approaches to model sequential data. The output of the network at any time step t is
dependent not only on the input at time step t but also on the recursive inputs before time step t.
However, time series forecasting problems demands long term dependencies for which the RNN is
often rendered incapable due to the much mentioned problem of vanishing and exploding gradients.
Hochreiter et al [Hochreiter and Schmidhuber(1997)] proposed the Long short term memory model
(LSTM) equipped with memory blocks to deal with vanishing gradients by memorizing the network
parameters for long duration. This article employs this approach for modelling the time series. The
model consists of one hidden layer with twelve nodes. The inflow with its two lagged value is
provided as an input sequence to the model and Relu activation function is employed in the model.

2.3. Empirical mode decomposition (EMD)

Empirical mode decomposition proposed by Huang et al. 1998 is a signal decomposition technique
developed especially for the non-linear and non-stationary time series data. The essence of EMD is
to decompose the time series into finite number of intrinsic mode functions (IMFs) and a residual.
The major advantage of EMD technique is that the decomposed components are the time series data
that oscillate about zero, therefore can be effectively analysed. Also, the decomposed IMFs and
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the residue can be reassembled to realize the original time series without any information loss. By
principle, IMFs should satisfy the following two criteria,

1. The number of zeros and extremes of the entire IMF data set should be same, and
2. The mean value of the envelope defined by local maxima and local minima is zero

The original sequence is decomposed into intrinsic mode functions (IMFs) and a residual as follows:

xk =

n∑
j=1

cj(t) + rn(t) (1)

where, x(t) is the original time series,
∑n

j=1 cj(t) are the IMFs and rn(t) is the residual.
In the proposed model, EMD is combined with LSTM wherein instead of the raw data, the highly

correlated IMFs are assumed as input with a presumption that these IMFs store the majority of the
information required for the prediction and the noise or random nature in the data can be judiciously
kept out of the modelling by removing the corresponding IMFs. The flow chart describing the
proposed methodology is shown in the Figure. 1.

Time series

Empirical Mode Decomposition

IMF IMF Residual

LSTM LSTM LSTM

Final Forecast

Figure 1. Flowchart describing the proposed EMD-LSTM model

2.4. Model Performance Evaluation

The time series model once trained needs to be validated for its prediction ability which is
undertaken through several error and statistical indices, discussed in the following.

2.4.1. Nash-Sutcliffe efficiency (NSE) Nash-Sutcliffe efficiency (NSE) estimates the goodness of
fit. It is evaluated by the following equation:

NSE = 1−
∑N

i=1(y
act
i − ypredi )2∑N

i=1(y
act
i − yavgact )

2
(2)

where, ypredi , yacti are the predicted and actual values of inflow, N is the number of samples, yavgact is
the mean value of measured sample.

2.4.2. Mean absolute error (MAE) The mean absolute error depicts the average of the absolute
error between the actual observed value yacti and the predicted value ypredi . It is given as:

MAE =
1

N

N∑
i=1

|yacti − ypredi | (3)
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2.4.3. Root mean square error (RMSE) The Root mean square error (RMSE) measures the
prediction performance of a model. The smaller the RMSE, the better is the accuracy of the
prediction model. RMSE is evaluated as:

RMSE =

√√√√ 1

N

N∑
i=1

(yacti − ypredi )2 (4)

3. STUDY AREA AND DATA DESCRIPTION

The Bhakra Nangal dam is the second highest concrete gravity dam in Asia located across the river
Satluj in the state of Himachal Pradesh, India. The upstream catchment area of the dam is 56,980
km2. The Rainfall in the catchment area varies over the basin with an annual average of 875 mm.
The reservoir, Govindsagar has a gross capacity of 9876 m3 with live storage capacity of 7814 m3

above dead storage level of 445.62 m. The area covered by the reservoir is 168.35 km2 when full.
The total runoff is 16,441 m3 for a mean year. River Satluj, which originates from the Himalayas,
forms a major source of water in the region. Due to the climate change and rainfall pattern change,
the magnitude of the streamflow is of concern for water management. The river flows are high
from June to September because of the monsoon rains and melting of snow. Eventually, accurate
forecasting of the inflow for such huge reservoir is imperative for the reservoir operation, flood
control and also ensures the structural safety of the dam at the same time.

The real time observed daily inflow for the period 2013-2022 is available on the website of Bhakra
Beas Management Board (BBMB). An univariate time series forecasting is performed to forecast
the inflow for different lead-times (3, 5 and 7 days) with an objective of flood forecasting, reservoir
safety and health assessment. The daily inflow data is split into training (calibration) and testing
(validation) with 70:30 ratio each respectively as shown in Figure. 2
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Figure 2. Reservoir Inflow Data of Bhakra reservoir from 2013 to 2022

4. RESULTS AND DISCUSSION

The time series data of the reservoir inflow is decomposed into nine IMF components and one
residue in the order of decreasing frequency by using EMD. The last component is the residue which
represents the general trend of the time series. All the extracted IMF components are not shown here
for brevity. In order to explore the physical phenomenon of the extracted IMF components, a cross
correlation study is carried out between each IMF component and the original time series data. As
shown in Table I, IMFs 2, 3, 4, 5 and 6 have shown a significant positive correlation with the
original data.
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IMF Cross- correlation coefficient
1 0.0285
2 0.1731
3 0.1691
4 0.4301
5 0.8199
6 0.1129
7 0.0829
8 0.0484
9 0.0757

Residual 0.0742

Table I. Correlation of IMFs with original data
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Figure 3. Variation in cross-correlation coefficient with the number of IMFs

In order to reduce the impact of noise (or random nature present in the data) on forecast and to
maintain economy in computation, selection of the vital IMF components is essential. The selection
is done on the basis of maximum positive correlation of the concerned IMF with the original time
series data. Figure. 3 depicts the variation of correlation coefficients with the number of IMFs
considered. The correlation increases with the increase in number of IMFs (arranged in descending
correlation coefficient from Table I). The curve shows an increasing correlation up to six IMF’s and
becomes constant thereafter allowing identification of an elbow to decide the practical numbers of
IMFs to be considered. Accordingly, six IMFs are considered for our proposed EMD-LSTM model.
Figure. 4 shows the graphical representation of the six IMFs employed for EMD-LSTM model.
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Figure 4. The intrinsic mode functions (IMFs) employed for prediction in EMD-LSTM model.

Figures 5 6 7 shows the forecast plots along with the scatter plots of the observed inflow and
predicted inflow from the three models (ANN, LSTM and EMD-LSTM) for three lead times (3, 7
and 10 days). The predictive performance of the model decreases as the lead time increases. The
comparison results reveal that the EMD-LSTM model provides relatively better performance and
illustrates the good fit of the model against the observation than the LSTM and ANN model. The
ANN model despite captures the underline physics of the system from the observed data for most of
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Figure 5. Reservoir inflow forecast for 3 days,7 days and 10 days ahead respectively by ANN model
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Figure 6. Reservoir inflow forecast for 3 days,7 days and 10 days ahead respectively by LSTM model
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Figure 7. Reservoir inflow forecast for 3 days,7 days and 10 days ahead respectively by EMD-LSTM model

the parts yet it does fails to replicate the complete physical process for all data ranges. Eventually,
ANN model fails to capture the variation for higher lead times. Overall, the scatter plot illustrates
that the EMD-LSTM model can predict the inflow much better than its alternatives.
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Table II depicts three performance indices (NSE, RMSE and MAE) for the performance
evaluation of the three competing models for inflow prediction.The NSE values range from 0.84
to 0.92 for ANN model, 0.93 to 0.96 for the LSTM model and 0.94 to 0.98 for EMD-LSTM model
for 3 days , 7 days and 10 days lead times respectively. The RMSE increased significantly with
the increase in the lead time for all candidate models. Nevertheless, EMD-LSTM yielded quite low
RMSE compared to its alternatives (Figure. 8 and Table II). The MAE results further signify that
the proposed model predicts more accurately and the other alternatives have more errors.
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Figure 8. Comparison of root mean square error for ANN, LSTM and EMD-LSTM model respectively

NSE RMSE (m3/sec) MAE %
Lead time (days) 3 7 10 3 7 10 3 7 10

ANN 0.92 0.87 0.84 116.63 155.59 172.38 68.75 93.94 106.57
LSTM 0.96 0.94 0.93 87.86 101.96 110.33 45.62 59.71 66.58

EMD-LSTM 0.98 0.95 0.94 47.80 91.96 97.06 31.98 59.18 73.21

Table II. Model Performance evaluation for 3 days, 7 days and 10 days ahead lead time respectively

5. CONCLUSIONS

By coupling EMD and LSTM, the proposed model significantly enhances the forecasting accuracy
and prediction capacity. It deals effectively with the non stationarity and noise existing in the original
time series. For small lead time, all the models perform notably well in terms of higher accuracy
and less error. The proposed model performs significantly better among other models for higher
lead time. ANN model is unable to capture the trend of original time series for higher lead time.
The LSTM model is applicable in model fitting and forecasting. Moreover, EMD is convenient to
reduce the noise and extracts original trend and periodicity of the original time series leading to
better prediction results.
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