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1. INTRODUCTION & OBJECTIVE

We address the generalization of the classical Rayleigh-Bénard convection problem in a
horizontal porous layer in an infinitely large domain heated from below to a finite three-
dimensional box. We look into a more intricate form of the modulated Rayleigh-Bénard problem
in which the temperature at the bottom boundary varies sinusoidally. The critical Rayleigh
number is determined using linear and nonlinear stability analyses using the energy method [1].
We observe that modulation amplitude more significantly triggers a change in flow patterns
compared to the effect of other parameters. We report the critical temperature difference required
for the onset of convection. In addition, a comparison between such temperature differences is
also provided. It is observed that subharmonic instability occurs.

Beck [2] utilized linear theory and the energy method to determine the effect of lateral walls
on the onset of convection in a porous medium and observed that both theories provide equal
stability bounds. Homsy [3] utilized the energy method for the temperature modulation-driven
convection problem and observed that the strong stability limits were lower than the asymptotic
ones; also, subcritical instabilities may exist as the energy stability bounds differed from the
linear ones. It is apparent from the literature survey that additional work is needed to describe
the flow patterns’ dependency on temperature modulation and sidewall effects. To the best of
authors’ knowledge, no study has considered temperature modulation affected flows in a box.
Beck [2] obtained the flow patterns for different aspect ratios at the onset of Darcy-Bénard
convection. Homsy [3] investigated the stability of time-dependent RBC using the energy
method and performed calculations for temperature modulation amplitude (d) up to 3. The first
of the two objectives in the present investigation is to extend the calculations to 6 = 10. The
present problem, as shown in Fig.1, considers the sidewall effect on the onset of thermally
modulated convection. The second objective is to describe the motion in a box resulting from
modulation amplitude and frequency variations. The results indicate that modulation amplitude
triggers a change in the preferred cellular mode. This objective includes identifying the types of
flow patterns and the nature of the transitions among flow patterns.

Figure 1. Schematic of bounded porous domain heated from below with a time-periodic temperature
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2. RESULTS & CONCLUSIONS

It is observed that subcritical instabilities are possible in the current investigation, as energy
bounds do not coincide with linear ones. Also, similar to Homsy [3], strong global stability
bounds are lower than the asymptotic ones as shown in Fig 2. Further, it is observed that with
an increase in J, opposite behavior of the critical Rayleigh number can be observed for linear
and energy limits. Linear bound increases with an increase in 0 up to a critical value, and sub-
harmonic mode becomes the preferred for further increase in d. In contrast, strong global and
asymptotic limits decrease with an increase in d. The decreasing rate of strong global limits with
o0 is greater than that of Asymptotic limits. Further, it is observed that the stability limits by
linear and nonlinear analyses coincide for ¢ = 0, indicating that subcritical instabilities occur
only due to temperature modulation. This observation is similar to results reported earlier by
Beck [2], which show that the energy stability bounds are equal to the linear ones for Rayleigh-
Bénard convection.
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(a) Rac versus 6 with o = 10, (b) Ra. versus o with 6 =1,

Figure 2: Ra.obtained for 4;=2.5, A>= 1.5, and Pr=>5.

We find that stability bounds obtained using the linear stability and the energy method
coincide when o — oo, which is a case of non-modulated convection. This observation is
analogous to the results reported earlier in various studies [4,5].

We conclude that at low ¢ values, harmonic instability is identified as the most unstable
mode for the considered case. In contrast, the sub-harmonic mode becomes the most unstable
one at moderate values of 6. Larger values of ¢ delay the occurrence of sub-harmonic instability.
The critical temperature difference required for the onset of convection is obtained for water
using the thermophysical properties. A comparison between the results of linear analysis and
the energy method is documented for varying 0 and o, and it is observed that subcritical
instabilities as energy bounds are lower than those of linear ones.
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